AD=~A105 659  NORTH CAROLINA UNIV AT CHAPEL HILL DEPT oF STA"’STICS F/6 9/4
INFORMATION CAPACITY OF SAUSSIAN CHANNELS. (U

SEP 81 C R BAKER NODO14=7SeC=0491
UNCLASSIFIED ’




oz

INFORMATION CAPACITY OF GAUSSIAN CHANNELS V4

ADA105659

ﬁ Charles R. Baker*

3 Department of Statistics

University of North Carolina
Chapel Hill, NC 27514

DTIC

M ELECTE
Q, 0CT 16 1981 -

it )

i A8t e 4 v,

B

DISTRIBUTION STATEMENT A

Approved for public 1elease;
Distribution Unlimited

*Research supported by ONR Contract N00014-75C—0491/

81 10 15




AP, St TR SRR

Abstract

Consider a communication channel without feedback, with transmitted

signal A(X), and with additive Gaussian noise N. The information capacity

of this channel is obtained subject to the constraints E]lA(X)]|§ < P, where
Il-llw can be regarded as the RKHS norm of the stochastic process W. The

class of admissible processes W includes all Gaussian processes having in-

duced measure equivalent to the measure induced by N,
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Introduction

This paper considers the information capacity of the Gaussian channel without
feedback. The channel input is a sample function from a stochastic process X; it
is encoded into the signal sample function by a coding operation A; the channel
adds a sample function from a Gaussian noise process N (independent of X); the chan-
nel output is then a sample function from the process Y = A(X) + N. The quantity

of interest is the information capacity
C = sup I[X,A(X) + N]
2

where I[U,V] is the mutual information of the processes U and V, and Q is a set

of (A,X) defined by appropriate constraints.

Let

3

!N denote the reproducing kernel Hilbert space (RKHS) of N; under the
constraint EIIA(X)||§ < P, a complete solution to the information capacity problem
is given in [1]}. However, there is also considerable interest in the capacity prob-
lem using constraints of a different type. The following constraint has been ex-
amined in sﬁecial cases in various publications [2], [3], [4], [6]: Q is the

set of all (A,X) such that EIIA(X)II; < P, where W is a second Gaussian process.
There are various motivations for this definition of Q. For example, if W is the
Wie¥er process on [0,T], as in [2], and [A(X)], = f: Vds, then IIA(X)II;

= Vidt. This is the usual power constraint. A more general motivation is that
in :nny applications one may not know the precise covariance of N. It is then of
interest to calculate upper and lower bounds for the capacity, over all Gaussian
processes N whose induced measures are mutually absolutely continuous to the mea-

sure induced by some '"most likely" (or reference) Gaussian process W.
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A complete solution is obtained here for the capacity problem using the
above definition of Q. 1In a subsequent publication, the results obtained here

will be applied in an analysis of the feedback channel of [2].

Mathematical Structure

The channel model is defined as in [1]. The channel noise N is represented

by a measure uy on the Borel o-field of a real separable Hilbert space H The

2
message X is modeled by a measure by on a real separable Hilbert space Hl' The

inner product on Hi is denoted by <-,->i. A: Hl+ H2 is a Borel-measurable coding
. . 2
function. W, is a strong second order measure on H, (IH2||x||2duw(x)< ®), Ry and R,

denote the covariance operators of Uy and My The following assumptions are made.

(1) RN = Rw1/2(1+S)Rw1/2, where S is a compact operator in HZ’ and S does
not have -1 as an eigenvalue. Without loss of generality, it is assumed

that range(RN) = H2.

(2) The admissible set Q is the set of all (A,ux) such that

- 2
f,r,IHRwl/zA(x)H2 duy (x) s P.

The definition of Q given in (2) implies that My ® A-l is strong second order.
Since we can (and do) assume that Hye My and My © A-1 each have zero mean, the con-
. . . . -1/2 -1/2 . _
straint in (2) is equivalent to trace Rw RA(X)RW s P, where RA(X) is the co
;1/2 exists because of assumption (1). If

rangefRNS # Hz in a given problem, one can replace H2 WLOG by range(RNi. Alterna-

variance operator of A(X). Note that R

tively, one could use the original H2 and apply the constraint

-1 2 -
!"z ann <A(x),Z.>; duy(x) € P, where Ry Zna 22y © I, With each § > 0 and
{Zn.nzl} sn o.n. set.

Much of the following analysis will hinge on the properties of the strictly

negative eigenvalues of S. These eigenvalues will be designated as {An' n21},
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An < An+1' with {en’ nzl} associated o.n. eigenvectors. Of course, depending on

the particular Ry and R,, the set {An, n21} can be empty, finite, or countably
infinite.

The joint measure on H1 x H2 representing message and channel output is

Hyy? with My the measure representing the channel output process Y. They are

defined as in [1]}:
By (B) = by ® u t(x,y): A(X) +y e B)

By (€) = uy @ w{(x,y): (x,A(x)+y) e C}

where ux@ “N is product measure on H1 x H2 (all measures are defined on the usual

Borel o-fields, as in [1]). With these definitions, I[X, A(X) + N] = I[uXY],

where I[UXY] = o if Myy is not absolutely continuous with respect to Hy @ Ly,

and otherwise

f duXY
Iuy ] = log[—(x,y)] du, . (x,y).
XY H. xH duxauY XY

1772
Two results proved in [1 ] will be central to the following analysis. The

first is that for any fixed covariance operator RA(X) of the signal process, the

information I(uXY) is maximized by choosing A(X) to be Gaussian [1; Lemma 6].

The second is that if A(X) is Gaussian with covariance operator

. 1/2 1/2

Rax) Zi ag [Ry™ vyl e [Ry™™ vyl
where ) a <@ and {Vn, nzl} is an o.n. set in H,, then I[uXY] -(I/Z)anog[l*an]
(1, pp. 83-84].

Finally, it is noted that ||R;1/2xl|2 z IIxHw can be viewed as the norm of

x in the RKHS defined by the kernel rw(t.s): H2 x HZ +IR, rw(t.s) = <th,s>2.

1, actually determines 8 RKHS of real-valued functions on Hz; however, this RKHS is

a subset of the bounded linear functionals on H2’ and thus can be regarded as a

subset of Hz,
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Main Result

The solution for the information capacity problem defined in the preceding

section is given in the following theorem.

Theorem, Let C = sup I[uXY], where Q is defined by assumptions (1) and (2)
2

of the preceding section.

(a) 1If H2 is finite-dimensional, then

I (Qsy;)+#
i=1
K(1+Yn)

K
where K is the largest integer such that } Y, *+ P > Kyy» and
1

Yy SY, S ... is the set of all eigenvalues of S.
K

(b) If H2 is infinite-dimensional, {An, nzl} is not empty, and Z An’ P>-K)\K
1

for all negative eigenvalues A of S, then ) |An| <P and
n

1
C = %) log F———} + 1/2|P+)} A ].
Zn 1+An Zm m

(¢c) If H2 is infinite-dimensional, {An, n21} is not empty, and there exists a

K
largest integer K such that ) Ai + P> KAK and AK < sup{kn, nzl} then
1
K
) [hziﬂ (Mij
C = % log |—A—e——
n=l K(1+An)

(d) If H2 is infinite-dimensional, and {An. n21} is empty, then C = P/2,

In (a) and (¢), the capacity can be attained. In (a), it is attained using

8 Gaussian signal with covariance

K 1/2 1/2
Ragn * L TRy vyl @ IR vyl

[~
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K
zlYi +P

where {Vl"""’x} is an o.n. set, Sv, = y,v., and T = (1~~Yn)"1 - Y,
The capacity in (c¢) is attained with a Gaussian signal having covariance of the
same form as that for (a), but with Yi replaced by Ai and vy replaced by e
i=l, ..., K.

In (b) and (d), the capacity cannot be attained, except in (b) for the special
case where P"Zn)‘n'

In (b) and (c), the capacity is strictly greater than the capacity obtained
using the constraint E_ ||A(X) | |25f ]|R'1/2A(x) | |2 du,(x)< P; in (d), the capacity
l-lx N HI N 2 X
is the same. In (a), the capacity is strictly less than that for the constraint
E [IA(X)]|2 s P if all y_ 2 0 with vy, > 0; strictly greater if all y_ < 0 and
ux N n K n

Yy < 0; and no general statement holds if Yx > 0 and Yl < 0.

Proof of the Main Result

The proof of the Theorem will be given after having obtained several lemmas.

Lemma 1 Let N 2 1 be fixed, and suppose {pn, n=1,...,N} is a set of strictly pos-

itive scalars, Py 2 02 2,,.2 oN’ Let A c RN be the set of all x such that X 2 0 for

k k N N
n=l..., N, and 1 x_ s II p_ for k=1..., N. Then sup N[1+x_] = N[1+p_].
n n n n
1 1 A1 1
N N
Proof Define Gy: R° » R by G\ (X) = ) log[l+x ]. It is sufficient to show that
1

GN(,S) < GN(E)’ subject to the constraints

-x S0 n=l..., N | €
k k
glog X, - glog pnso k=1l,..., N (Cz).

The constraints Clnc2 define a convex set in RN. and GN is concave on IRN.

Thus, one has the problem of maximizing a concave function over a convex set in lRN.

O
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with concave and differentiable constraints; by Kuhn-Tucker theory [7] any

solution to this problem will define a global maximum over the set A. A solu-

. . . N . . . .
tion is any x* inlR satisfying the following set of equations for some X, B in RN

such that Y € 0 and Bi £ 0 for i=1,..,N [7]:

1 1
— -y + ) =0, n=1,..,N (S.)
1+x; n x; kznsk 1 1

Y XX =0 and -x* < 0, n=1,..,N (5,)

k k
Bk[g log x* - % log pn] =0

k k . k=1,..N (s
; log x; - g log o <0

)
The system of equations (Sl), (Sz), (SS) is easily seen to be solved by taking

N
x; =Py Yy = 0, and Zk=n8k = -on/(1+pn) for n=1,..,N. The fact that this solu-

tion gives Bk < 0 for all k=1,..,N follows by induction on N - k+l, using
IR for 2 s n s N. 0

Lemma 2 Let {xi, n21} be a summable sequence, with xi 2 x2 Suppose that

n+l’
S is a compact operator in Hz which is symmetric, has M £ © strictly negative
eigenvalues, and I + S is strictly positive. Then for any finite N < M and any

o.n. set ful,..,uN},

N N
2 1/2 -2 -
{iexg || (145) B 117 s 111[1+xf,u+xn) |

where \. s A S .. 8re the negative eigenvalues of S.
1 2

Proof Using the inequality ||(I+S)1/%un||;2 s ||(I¢S)'1/%an||§. it suffices

N N
2 -1 2 2 -1
to show that ¥[1+xn||(los) /zuhllzl < ¥[1+xn(l¢kn) 1.
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Let {un, n21} be any fixed CON set in H,. Define X = lenlun ®u The previous

"
n

inequality will be proved if one shows that
N N
-1/2 2 2 -
¥[1+I|(I+S) Zxu 112 s ity (144, .
By a result of Horn [5],
k -1/2 2 _k 2-1/4p
¥Huw) XuJbs¥14mhﬁ

for all k £ N and any fixed p 2 1, where {Tn(p), p21} are the eigenvalues of

X1/2p(1+5)'lxl/2p and Tn(p) 2 Tn+1(p). This follows from the fact that

(I'eS)-szl/2p is compact, asc is xi-1/2p _ 2|xn|1-1/2p u, ®u..

Let o > 0 be given. For sufficiently large p, (1+01)(I+S)-1 >X1/2p(I+S)-1X1/2p
k k K 1
and then II T_(p) < (1+a) T (1+A_)" ", so that
1 " 1 n

k k
I Il(I+S)°1/2X unllg < (1+cx)k T(1+ )-llx |2-1/4p’ k =1,2,...,N. Thus, for
1 1 " n
k -1/2 2 K K 1.2
all a > 0, 1 ||(1+S) Xu Hz < (1+0)" MI+Xx ) "x5, giving
1 n 1 n n

x -1/2 2 _k -1.2 . .
|1 (1+8) Xu ]|2 s I(1+x ) “x_, for k = 1,2,..,N. Applying Lemma 1, this
1 . n 1 m n

N N
. -1/2 2 2 -1
yields 111[1+|](I+S) Xu []5] = 111[1+xn(1+xn) 1. 0
Lemma 3 " Suppose that all the eigenvalues {An, n2l} of S are strictly negative,

Al < Az S ...., with Se, = liei' i21, and {ei, i21} an o.n. set.

K
(a) If there exists a largest integer K 2 1 such that Z An + P> KAK, then
1

K
Doan) +p

ZK 1=
C = % log
nsl K(1+An)

The capacity can be achieved; it is attained with a Gaussian signal having co-

variance operator "

Raaxy * { ‘1‘“#’2‘11 o Ry/%,]

v ot M B aEI Rt b
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(1*>\ )™
where 1, = (Z An+P - KA, is1,.0,K

This result includes the case when H2 is finite dimensional (so that K s dim(Hz)). ,

Moreover, this result is also obtained when one adds the additional restriction
M

that support (ux ° A-l) < M < », With this restriction, K = M if ) Xn + P>'MAM; |
1 :

otherwise there exists K < M such that the above expression is the capacity.

K
(b) If there does not exist a largest integer K such that Z An + P> KAK,
1
then J |An| <P, and ;
n
o 1 1
C = %) log[——-] + % (P+) A).
n=1 1+An n 1
Capacity can be attained only if P = -Z xn; it is then attained by a Gaussian sig- .
© %U 3 W
. . - * * - 1
nal with covariance R,, Zl T, [R{U*e;] @ [RiU*e.] where T, = T If P> -] A
then the capacity is the limit of the mutual information for a sequence of Gaussian
signals (qu), with covariance R Z T [R%U*e ] e [R%U*e ] and
14-)\) :
M ( . . i
ri-—M—Q A, + P - M) i=1,..,M. C
]
Proof :
. 1
From the results of [1, pp. 83-84}, I[“xy] s ¥} log[1+Tn] when My © A"
n=1

s Ahe

is Gaussian with covariance operator

. 1/2
RA(X)S ZnalTn[RN u ] © [Rl/z ]

with {un. n2l} any o.n. set in Hy. By Assumption (1), Rﬁ/z = R;/Z (I+S)1/2U*
with U unitary. Thus

E||R;1/2A(x)||§ = Trace RQI/ZRA(X)RQI/Z

= Trace (1+S)"u* nﬁ* RA(X)RN'*U (ps)”F

. Zn Tl (I’S)J‘U'“nl |§
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Moreover, for any choice of covariance operator RA(X)’ the information is maximized
if My © A'l is Gaussian [1, Lemma 6]. Thus, one can assume that My © A-1 is
Gaussian. The capacity problem now reduces to finding C = sup % Z log[1+rn],
! n
where Q' is the set of all {(1), (U} such that T 20 forn 21, ann <,
{u , n21} is an o.n. set, and ) T ||(I+S)%U*u ||2 <P
n’ i ’ . n''2 '

We rewrite the preceding expression as

C + sup [ loglt + x2 aes)Bumy 152,
''n

T ]|(I+S)%U*uﬂl|§. Since {xi, nzl} and {1, n21} are summable, and

m

2
where x
n

{un’ n2l} is to be selected, one can assume WLOG that xﬁ 2 x2

ne1? nxl. From Lemma 2,

for any such choice of {xﬁ, 1<nsM},

M M
2 - 2 -
I togln + I Bm [ 157 < 1 toglt + xpap ™).

We will maximize the right side of this inequality for fixed M, and show that the

maximum can be attained by {xz, 1sn<M} such that [ x2 = P and x2 2 x2 for
n 1 P n n+1
n=1,..,M,
M M -1
For fixed M 2 1, define fi: IR +IR by f,(y) = T log[l + Yp(1#A )71, We
n=1

seek to maximize fM(x) subject to the constraints

M

g(y) = Zl y, - P =0,

hy(Y) = -y; <0, i=1,..,M,

This is a constrained maximization problem. Since log(l + ay) is concave over
{y: y20} for any a > 0, the function fM is concave over the convex set

(z ianM: Zi 20, i=1,..,M}. Moreover, each constraint function is concave.
Thus, any solution to this problem will define a global maximum for f“ {7]. In
order for y* to be a solution, it is necessary and sufficient that the following

sot of equations be satisfied [7]:

~3
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1 + B - =0 i=l M (1
1¢y;*>‘ Yl = ye vy
M M
L - =
Zl yh - Ps<0, 8[21 Y, - Pl =0 (2)
= )’; <0, Y1YI =0, i=1t°--’M (3) N
for some set of non-positive real numbers {B,Yl,..,YM}.
; We first attempt to obtain a solution y* by setting Yy T Yy ==Yy S 0.
]
i This requires
| !
' —— = -B, 1i=1,..M; thus
\ * 2 ] )
‘ 1+yi+}\i
} M M 9
| ) yt + Y (1+x,) = -MB" ", and
1 1 1
b M M
: Z yi + z (l-#)\i)
| 1 _
yn - M (1+>\n)
for n=1,2,..,M. This definition of y* and constraints (3) require that
M M
Zl yi * Zl (143;) 2 M(1+A)), n=l,...M;
ﬁ this inequality is satisfied for all n < M if and only if it holds for n = M. Also

M
g = —(1+y{+ki) implies B < 0, so that z y; = P by constraints (2). Thus, if
[ M M 1
Ipe+] A2 MAM’ then an optimum solution is given by
1 1

ZM
P + A, - MA
1 J i

* j =
1 yi = M , i=1,..,M.

| If there exists K < M such that

! K
P+ 21 Ai 2 KAK

K+1
Pe+) A; < (K+1) A

1 K+1’

P

e ;&SNS - Wt P Al DAV, . i o B 2N DT s wend e C o A ek W L
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i e it

then constraints (1)-(3) are satisfied by choosing

Ko
B=-K[P+ K+ ] Al
1

yi =0, 1i>K

K
-1 .
=K[P+) A - K], isK
n=1
Koo -1,
e -K[P + K + Zl AT ) i>K.

Thus, under the assumptions of (a},

K

7 2 -1 ZK Zi=1)\i+ i
sup ) log[l + x (1+1 ) 7] = log|[— 37—
o 1 n n n=1 K(1+An)

@
where Q"' = {(xi): Z xi < P}. As already noted, when My © Al is Gaussian with
1

[e -]
. } 1/2 1/2
covariance operator RA[X) = Zl TRy “u ) & [Ry "u ], {un, n2l} an o.n. set, then

I[UXY] = % Zn=110g[1+Tn] s % Zn= log[l + x§(1+An)'1]

1

.2 .02 2. .2
if x = Tnll(I+S) U*unll SR

Choosing u = U e »nzl, .
x% = K'I[P + 3 A~ KA1, m=1,..,K
n fie1 n

2
X, = 0, n>k

one obtains (a) immediately if H2 is finite-dimensional. If H2 is infinite-dimen-
sional, then (a) is obtained as above by taking M sufficiently large, and noting
that 21 log[l + Tn] is a non-decreasing function of M if T, 20 forn 2 1. The
proof of (a) under the additional constraint that support (ux ° A'l) S M < »can

be obtained from the preceding proof and the results of [1, pp. 83-84].

P R L X SN




K

a
Suppose now that ] A + P> K\ forallkK21. IfP<] [A],
1 1
K
there exists K 2 1 and A > 0 such that P + J A = -A.  Thus,
1

K
[)\K’1|>(1/K) [-Zl A, - P1 = /K.

Assume |AK+pl >(1/K)A for 1 < p = N,

1 K+N 1 K+N
Pt > BmlL WPl R el

Then

1
so that

Daner| > o [8 +(V/KA] = A/K.

Hence, IAK+pI > A/K for all p 2 1, which contradicts A + 0, proving

@

21 A1 s P

A lower bound on C under the assumptions of (b) is now obtained

proof of (a), by taking CK to be the value of C under the additional constraint

that support (u, ° A-l) has dimension < K, so that
K
¥ ZK lei tF
c, = log | ———r—
K n=1 K(1+An)

and so

C2 lim C, = ¥ 21 log[(1+An)'1] + (P + 21 A).

To see that lim CK is an upper bound for C, suppose that lim C
K _ K
exists a Gaussian My © A 1 with covariance operator

K <C.

Rao = i) o Ry with

[ J
Xl T;II(I*S)*U*Uﬁllg < P, and for some finite M

page 12

then
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M
¥ Z log[l + 1'] > lim CK.
1 n K

However, as already seen, no selection of {(T;), 01;)} satisfying the above condi-

tions can be such that
M
¥ 21 log[l + T'] > C.
This contradiction establishes (b). The fact that the capacity in (b) cannot

be attained follows in the same way. 0

Lemma 4 Let C = su

z p R Iugyl-
) {Au: B |IR 1/2 XY
X

2
N A(x)||2 < P}

(a) If S has only non-negative eigenvalues, then C < C(N)’

(b) If S has only non-positive eigenvalues, then C 2 C( )

{(c) If H2 is infinite-dimensional and all eigenvalues of S are non-negative,

then C = C(N)= P/2.

Proof (a) Here |l(I+S)‘1|l < 1, and so IIRQI/ZA(XJIfg

-1/2

< a7 IR e

A 112 < IRV a1

for all A(X) in range (RL/?). Hence E |R;M 20 |15 s P implies
My 2

E, IIR&I/zA(X)i|§ < P, so that C is obtained by a supremum over a smaller set,
X A

yielding (a).
(b) 1In this case ||I+S]| s 1, and so
-1/2 2 X . -1/2 2
EuXIIRN A(X)ll2 < P implies EuXI'RW A(X)llz < P,
(¢) From (a) and [1, Theorem 2], C < P/2. For fixedn 21, let

Gaussian with covariance R = Eﬂ in [Rllzu ]le 1/2, ] with {u,, i21}
a0 = Tm d Ryl o Ry Yy i’

a0t ™

ey
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C
a CON set in HZ' From {1, Theorem 1], I[uan ] =(n/2)1og[l + —%1. Define (Cn) by
n
C = nP[Zn||(1+S)qu* 11217Y. mhen £ [[RCY2A00) (] = P, so (A ) € Q.
n 1 EUC uy " ’ “Xn
n

n % 2
The fact that (1/n)] || (I+9) U*ui||2 + 1 follows easily from the fact that

i=1
||51/2uil |§ 0. Thus, C_ P, and so I[u, y ] + P/2, showing C 2 P/2. D

n'n

Proof of Theorem

(a) is proved exactly as (a) of Lemma 3. (d) is contained in Lemma 4.
To prove (b) and (c) we identify two possibilities for each: (1) S has a finite set
of M strictly negative eigenvalues; (2) S has an infinite set of strictly neg-
ative eigenvalues. We prove only (b) and (c¢) for case (1); the proof for (2) is
similar but simpler.

First, we note that the capacity is at least C, as given in (b) and (c).
This follows immediately in (c) using a Gaussian Max with covariance as specified
for (c¢) in the theorem. For (b), this is shown by using a sequence of Gaussian

signals (ukx) having covariance

M
P+ A.
M 1/2 1/2 21 i Zk

= i 1 - 1/2 1/2
Ryy = - Zlﬁri' Ry & ®RY € * 3 h1 R

u; ® u; s where
M+ 1 N i RN i

S e, = Aiei, Ai< 0, S uj = Vjuj’ 15 2 0, for i=1,..,M; j=M+l,...,k; ana {°1""eM’

M
uM+1""uk} is an ON set. As k + =, I[ukx] > ¥ 21 log[I%x—i + (P + 21 Ai) = C,
n

Thus, to prove (b) and (c) when S has only a finite set of strictly negative eigen-

values, it suffices to show that the capacity is s C as given in the theorenm.
Suppose then that the assumptions of either (b) or (c) are satisfied, and that

S has strictly negative eigenvalues Al s Az $...8 AM' Suppose that the true capacity

is greater than C, as given by (b) or (c). Since the capacity is the limit of

MK Eatea - s
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k -
(I[uXY]) for a sequence (u kK ° Akl) of Gaussian measures, there exists {1]
X

. 1/2 1/2, J
a covariance operator R such that R = Z T Ry us ® Ry U % ] log[l +Tj] >C,

{uj, j21} an o.n. set, and Z T ||(I+S) u || = P, < P. We can assume that

! J>M. Let T: Hz -+ H2 be the unitary map defined by ij=U*uj, where {vj, jz1}

‘l’j | I (I+S)15U"uj | [;, one has that

are the eigenvectors of S. Defining x?

IA
+

J J
T loglt+ 1) €] tog(l + x2|[(1es) Furu, |12
1 1 ) i

T — e - ——
1

J
J log[1 + x?l](I+S)-%U*TV.|}2].
1 j ithe

We can assume that x? 2 xi#l, j=1,.., J-1; from Lemma 2, :

— T =

J M 2 -1
7 logf[l + 1.] <] log[l + xi(1+A.)7")
1 1 1 j j

2

3
o] togll + x5][(1+8) Yo 1),
M+1

[
<

M J
Define P, '= ) x?. Then } L - P's the eigenvalues of (1+5)"! are the
1

M+1

p same as those of T*(I+S)'1T, and thus Lemma 3 and Lemma 4(a) yield

[ S

X Z (143,) + P,
: 21 log[l + 1,] s Cy(P") = Zn log "ETT:X;"“‘ +P - P

are or

We maximize CO(PI') with respect to Pl'. The derivative is non-decreasing for
K

increasing Pl' if Z Ai + Pl' < 0. This is satisfied if K < M; taking P1 arbitrarily
|

close to P (J + =), one obtains part (c) of the theorem. If K = M, then

M
d d M
C.(P,') >0if P.' < - ;9
T o(P1") 1 Zl A ap;T'CO(Pl') <0if P’ > -Zl A;{» and by continuity

M
of C,, Co(Py") < Co(-z A{), proving (b) of the theorem.
1

The remaining parts of the theorem can be obtained from the proof of Lemma 3,
snd from Lemms 4. g K

b . — =




P

e = W s

(1]

(2]

(3]

(4]

(5]

(6]

(7)

wn

. M. Fano, Transmission of information, MIT Press, Cambridge, MA and

. Horn, On the singular values of a product of completely continuous oper-

. Ihara, On the capacity of the continuous time Gaussian channel with feedback,
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